Swim velocity profile identification through a Dynamic Self-adaptive Multiobjective Harmonic Search and RBF neural networks
نویسندگان
چکیده
Technology has been successfully applied in sports, where biomechanical analysis is one of the most important areas used to raise the performance of athletes. In this context, this paper focuses on swim velocity profile identification using Radial Basis Functions Neural Networks (RBF-NN) trained by the Gustafson-Kessel clustering combined with a novel Dynamic Self-adaptive Multiobjective Harmony Search (DS-MOHS). One study case is analyzed, from real data acquired of an elite female athlete, swimming breaststroke style. Better results are obtained by DS-MOHS when compared with standard multiobjective harmony search in terms of accuracy and generalization of the model.
منابع مشابه
Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملA Prioritized Multiobjective Mpc Configuration Using Adaptive Rbf Networks and Evolutionary Computation
In this work a prioritized multiobjective model predictive control configuration for nonlinear processes is proposed. The process is modeled by an adaptive radial basis function neural network so that modifications through time can be identified. The different control targets are formulated in a multiobjective optimization problem which is solved using a prioritized evolutionary algorithm. The ...
متن کاملImproved RBF Neural Network for Nonlinear Identification System
Standard particle swarm optimization (SPSO) algorithm was modified by escape strategy of the particle velocity, and an escape PSO (EPSO) was proposed to overcome the shortcomings of being trapped in local optima because of premature convergence. To enhance the performance of radial basis function (RBF) neural network, the EPSO is combined with RBF neural network to form a EPSON hybrid algorithm...
متن کاملIdentification of Crack Location and Depth in a Structure by GMDH- type Neural Networks and ANFIS
The Existence of crack in a structure leads to local flexibility and changes the stiffness and dynamic behavior of the structure. The dynamic behavior of the cracked structure depends on the depth and the location of the crack. Hence, the changes in the dynamic behavior in the structure due to the crack can be used for identifying the location and depth of the crack. In this study the first th...
متن کامل